The realization space is
  [1   1   0   x1^2 - 2*x1 + 1   0   1   1        0   x1^2 - 2*x1 + 1   x1 - 1      x1 - 1]
  [1   0   1             -x1^2   0   1   0       x1             -x1^2     x1^2        x1^2]
  [0   0   0                 0   1   1   1   x1 - 1       x1^3 - x1^2     x1^2   x1^2 - x1]
in the multivariate polynomial ring in 1 variable over ZZ
within the vanishing set of the ideal
Ideal (2*x1^14 - 5*x1^13 + 2*x1^12 + 11*x1^11 - 29*x1^10 + 39*x1^9 - 33*x1^8 + 18*x1^7 - 6*x1^6 + x1^5)
avoiding the zero loci of the polynomials
RingElem[x1^2 - x1 + 1, x1, x1^3 + x1^2 - x1 + 1, x1 + 1, x1^3 - x1 + 1, x1 - 1, 2*x1^2 - 2*x1 + 1, 2*x1^2 - x1 + 1, x1^3 + 2*x1^2 - 2*x1 + 1, x1^2 + 1, x1^3 - 3*x1^2 + 2*x1 - 1, 2*x1 - 1]